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ABSTRACT. In this paper the asymptotic waves ( smooth solutions of nonlinear hyperbolic
partial differential equations (PDEs)) are introduced from the point of view of double scale
method, giving a physical interpretation of the new (fast) variable, related to the surface
across which the derivatives of the solution vary steeply.

1. Introduction

The motion of a large number of media is described by nonlinear hyperbolic PDEs.
Their solutions are referred to as waves. Some of them present various types of disconti-
nuities, some others not. In the first case, as some surface is crossed, the solution or/and
its derivatives undergo a jump. In this case it is said that the solution presents a shock, or it
is a shock wave or that we are in presence of a discontinuity wave ( jump of the first order
derivatives). In the second case, instead of the jump there is a steep variation. In this case
it is said that the solution is an asymptotic wave. Both these types of solutions are called
nonlinear waves because they satisfy nonlinear hyperbolic PDEs.

The theoretical interest in nonlinear waves was manifest as early as the years ’50 and ’60
of the last century, leading to basic results in the field. Subsequently, a lot of applications
to various equations from elasticity, fluid mechanics and other branches of physics were
carried out ([1]-[8]).

The mathematical aspects involved into the study of asymptotic waves belong to the
singular perturbation theory, namely the double-scale method. This approach was initiated
in the papers of H. Poincaré and Krylov and Bogoliubov ([9]-[10]), treating nonlinear
oscillations governed by ordinary differential equations. Then, it was very much applied
in [10] and studied in [11], [12], [13], first in the mechanics of discrete points framework
and subsequently ([14]-[19]), almost simultaneously with the theory of asymptotic waves,
in a more and more rigorous way and for more and more general settings.

The multiple-scale method, and, in particular, the double-scale approach, is appropriate
to phenomena which possess qualitatively distinct aspects at various scales. For instance,
at some well-determined times or space coordinates, the characteristics of the motion vary
steeply, while at larger scale the characteristics are slow and describe another type of mo-
tion. As the phenomena of large and small scales occur simultaneously, the nondimension-
alization must take into account more than one characteristic time and/or length and the
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asymptotic approximations of the solutions of the governing equations are more than one
too. In addition, the scales are defined by some small parameters.

Since the asymptotic variables are the small parameters, the governing equations are of
perturbation. Moreover, due to the existence of several asymptotic approximations of the
solution for various domains of variation of (some) independent variables, the perturbations
are singular.

The double-scale method can be viewed as a method of matched asymptotic expan-
sions ([18]), another important method of singular perturbations. Also, the multiple-scale
method is a multivariable method, it implying the introduction of several new independent
variables.

In the context of rheological media, a series of studies on linear waves were carried
out in [20]-[22] (Ciancio-Restuccia 1985, 1987). In this paper the asymptotic smooth
waves are introduced from the point of view of double scale method ( see [23], Georgescu
1995). In Section 2 we define the new (fast)variable related to the surface across which the
derivatives of the solution vary steeply. Section 3 concerns the hyperbolic equations and
the relevance of their characteristics to the study of asymptotic waves.

2. Application of double-scale method to nonlinear hyperbolic PDEs

In this section first we recall an application of double-scale method to non-linear hyper-
bolic PDEs, providing the behaviour of the Maxwell rheological media, developed in [20],
where the propagation of asymptotic waves was studied. In particular, in [24]-[28], using
the methods of classical thermodynamics of irreversible processes with internal variables,
the stress-strain relations for viscoanelastic media of order n with memory were derived.
It was assumed that the strain tensor εik is given by an elastic part and an inelastic part, n
different types of microscopic phenomena occur which give rise to inelastic strains and the
total inelastic deformation is additively composed of n contributions due to these phenom-
ena. These contributions were introduced as internal degrees of freedom (internal tensorial
variables) in the state vector. In the case that only one microscopic phenomenon gives
rise to inelastic strain (only one internal variable of mechanical origin is taken into con-
sideration) and no viscous effects and memory effects occur the stress-strain relations for
anelastic media of order one without memory or also Maxwell media were derived. In [20]
the balance equations for the mass and momentum density together with the constitutive
relations for Maxwell media were written, respectively, in the form

(1)
∂ρ

∂t
+

∂

∂xi
(ρvi) = 0,

(2) ρ

(
∂

∂t
vi + vk

∂

∂xk
vi

)
+

∂

∂xk
P̃ik +

∂

∂xi
P = 0,

where vi = dui

dt is the i-th component of the velocity field,

(3)

a(1,1)η
(1,1)
(s) P̃ik+

∂

∂t
P̃ik+vp

∂

∂xp
P̃ik+

1
2
a(1,1)

(
∂

∂xk
vi +

∂

∂xi
vk

)
−1

3
a(1,1) ∂

∂xp
vpδik = 0,
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(4) b(1,1)η
(1,1)
(v) P ′ +

∂

∂t
P ′ + vp

∂

∂xp
P ′ +

1
3
b(1,1) ∂

∂xp
vp = 0,

where (i, k = 1, 2, 3), the relation dεik

dt = 1
2

(
∂vi

∂xk + ∂vk

∂xi

)
is used and P̃ik is the

deviator of the mechanical pressure tensor Pik .
Pik is defined in terms of the symmetric Cauchy tensor Pik = −τik. Moreover,

P̃ik = Pik −
1
3
Pssδik, P =

1
3
Pss, Pss = trP,

Pik = P̃ik + Pδik, P̃ss = 0, P ′ = P − P0 = −(τ − τ0),
where P is the scalar part of the mechanical pressure tensor Pik and τ0 and P0 are
the scalar parts of τik and Pik , respectively, of the medium in a state of thermodynamic
equilibrium. This equilibrium state plays the role of a reference state. Moreover, the
coefficients in (3) and (4) satisfy the relations

a(1,1)η(1,1)
s ≥ 0, a(1,1) ≥ 0,

(5) b(1,1)η(1,1)
v ≥ 0, b(1,1) ≥ 0,

where a(1,1) and b(1,1) are scalar constants which occur in the equation of state, while
the coefficients η

(1,1)
s and η

(1,1)
v are called phenomenological coefficients and represent

fluidities.
The stress strain relations (3) and (4) are valid in the isothermal and isotropic case.

Equations. (1)-(4) form a system of ten quasi-linear first order PDEs for mass density,
three components of the velocity field, five independent components of P̃ik and the scalar
part of the stress tensor P ′ , that can be written in the form (see [20])

(6) Aα(U)Uα = B(U) (α = 0, 1, 2, 3),

where Uα = ∂U
∂xα , x0 = t (time), x1, x2, x3 are the space coordinates, U is a column

vector (with 10 components) of the unknown functions (which depend on xα ), Aα are
square matrices 10 × 10 and B is a column vector with 10 components (four of them
are null and the others are proportional to the components of U ).
In particular

U =
(

ρ, v1, v2, v3, P̃11, P̃12, P̃13, P̃22, P̃23, P ′ )T
,

(7) B =
(

0, 0, 0, 0, P̃ ∗
11, P̃ ∗

12, P̃ ∗
13, P̃ ∗

22, P̃ ∗
23, P ′∗ )T

,

with P̃ ∗
ik = −a(1,1)η

(1,1)
(s) P̃ik, P ′∗ = −b(1,1)η

(1,1)
(v) P ′, (i, k = 1, 2, 3).

In [20], following [4]-[8], the propagation of asymptotic waves was studied using a
general method devised to oscillatory approximate solutions for first order quasilinear hy-
perbolic systems.

Equations (6) are semilinear (the highest order derivatives Ut and Uα occur linearly).
In semilinear hyperbolic PDEs (see Section 3) the solution U(xα), α = 0, 1, ..., n

or/and some of its derivatives undergo steep changes across the so-called interior layers,
situated in the neighborhood of a family of moving in En surfaces S(t ) (parametrized
by the time t)

(8) ϕ(t, xi) = ξ̄, ξ̄ = const, (i = 1, ..., n).
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Along these surfaces the variation of U is slow. In this case it is said that U evolves
in progressive waves and that the surfaces (8) are (improperly called) the wave surfaces or,
simply, waves. Usually, the dimension of ϕ is a phase. Let ω � 1 be a large parameter;
usually its dimension is a frequency.

Asymptotically, this means that both ”slow” (old) and ”fast” (new) variables are
necessary to characterize completely the behavior of the solution as some parameter tends
to zero (see [23]).

Each variable (slow or fast) has a characteristic scale. This is why, an approximate
solution is looked for as depending on the old as well as on the new variables, where the
new variables are thought as independent of the old variables.

When no interior layers are present, all characteristic quantities have the same scale. If
only one new variable of a different scale is imposed, we say that the problem has a double
scale.

In this case, the appropriate method, used to derive solutions of asymptotic approxima-
tion is called the double-scale method. Usually, the new variable is a space variable xi or
the time t multiplied by a function of the small parameter.

In the application to hyperbolic PDEs the choice of the new variable has a physical
meaning. Namely, in the case of the wavelike solutions, the new variable is related to the
wavefront

(9) ϕ(t, xi) = 0, i.e. the new variable is ξ =
ϕ(xα)
ω−1

,

where (i = 1, 2, 3), (α = 0, 1, 2, 3) and ω � 1 , hence ω−1 is a small parameter. In
fact, ω is written only in order to make easier the determination of the order of magnitude
of the quantities. Moreover, it is understood that ϕ(xα) is of the same order of magnitude
as ω−1 . Therefore ξ is asymptotically fixed, i.e. not too large, not too small. All
other quantities in equations are also understood to be asymptotically fixed. Then, U =
U(xα, ξ) and xα and ξ are considered independent. In this way, with respect to the
variables (xα, ξ), the order of magnitude is given only by the powers of ω−1 and a
formal computation can proceed.

Introduce the quantities

(10) λ = −
∂ϕ
∂t

|gradϕ|
, n =

gradϕ

|gradϕ|
,

which are closely related to the quantities occurring in the higher-order asymptotic ap-
proximations of the solution of hyperbolic PDEs. Relation (10) shows that λ has the
dimension of the velocity, while n is the normal to the wavefront surface (9)1.

First, the double-scale method consists in expressing the derivatives with respect to xα

in terms of the derivatives with respect to xα and ξ.
Then, we look for the solution of the equations as an asymptotic series of powers of the

small parameter, say ε, namely with respect to the asymptotic sequence
{
1, εa+1, εa+2, ...,

}
or

{
1, ε

1
p , ε

2
p , ...,

}
, as ε → 0. In [20] it is considered p = 1, and ε = ω−1, such that

(11) U(xα, ξ) ∼ U0(xα, ξ) + ω−1U1(xα, ξ) + ω−2U2(xα, ξ) + ...
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The third point of the method consists in introducing the asymptotic expansion of the
solution into the equations in order to obtain the sets of equations of various order of
asymptotic approximation.

Each such set has as a solution one approximation Ur(r = 1, 2, ...) of U.
Let us sketch these steps for the equation (6). Thus, introducing (11) in the derivatives
Uα = ∂U

∂xα we have

(12)
∂U
∂xα

∼ ω−1

(
∂U1

∂xα
+ ω

∂U1

∂ξ

∂ϕ

∂xα

)
+ ω−1 ∂2U2

∂ξ

∂ϕ

∂xα
+ O(ω−2), as ω−1 → 0,

where we took into account that the first approximation U0 was a constant. Further,
taking into account the form of Aα and B , the following asymptotic expansions were
deduced

(13) Aα(U) ∼ Aα(U0) + ω−1∇Aα(U0)U1 + O(ω−2), as ω−1 → 0,

(14) Bα(U) ∼ Bα(U0) + ω−1∇Bα(U0)U1 + O(ω−2), as ω−1 → 0.

Introducing (12) - (14) into (6) and matching the obtained series, it follows

(15) Aα(U0)
∂ϕ

∂xα

∂U1

∂ξ
= 0,

(16) Aα(U0)
∂ϕ

∂xα

∂U2

∂ξ
= −Aα(U0)

∂U1

∂xα
−∇Aα(U0)U1 ∂U1

∂ξ

∂ϕ

∂xα
+

(
∇

[
B(U0)

])
U1.

Equation (15) is linear in U1, while (16) is affine in U2. These are the equations of first
and second order asymptotic approximation respectively.

Of course, equations of asymptotic approximation of higher order can be written and
they are affine, but their solution is very difficult. Just to solve the linear equation (15), the
only one dealt with in [20], the special Lax- Boillat method of constructing the eigenvalues
and eigenvectors of (15) in terms of n (given by (10)2) and the coefficients in Aα was
used ([1]-[8]).

Remaind that the wavefront ϕ is still an unknown function. In order to determine it,
some other peculiarities of the hyperbolicity of (6) were taken into account. Of course,
they have nothing to do with the double-scale method, but enables one to solve (15).

Remark, now, an interesting fact related to the variation of U along a curve C, defined
by x = xα(s), where s is the parameter along C. We have

(17)
dU
ds

= ω
∂U
∂ξ

∂ϕ

∂s
+

∂Uα

∂xα

dxα

ds
.

This relation shows that U does not vary too much if the curve is situated on the wavefront
(9)1, while it undergoes large variations (due to the presence of the large parameter ω ) if
C crosses the wavefront. Therefore, the choice of the new variable ξ in the double- scale
method is appropriate to the study of asymptotic waves.

For various other physical and related mathematical aspects of asymptotic waves the
reader is kindly referred to [29]-[33].
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3. Hyperbolicity of Euclidean spaces and of semilinear PDEs

In order to relate the characteristics of motion with hyperbolicity of equations governing
this motion, and then to describe the mathematical and physical meaning of the relevant
quantities in the previous sections, we recall the definition of the nonlinear hyperbolic
PDEs.

Following [8], we define these equations and show how some physical properties are
introduced in the methods used to solve them. Let En+1 be an Euclidean space, let
P ∈ En+1 be a current point, let U = U(P ) be the unknown vector function
U = (U1, U2, ..., UN ) , solution of the first-order semilinear PDE in a more general form
reads

(18) Gα(U(P ), P )
∂U
∂yα

= g(U(P ), P ), (α = 0, 1, 2, ..., n),

where g = (g1, g2, ..., gN )T is a column vector, yα are the Cartesian coordinates of P
and Gα are n+1 square matrices of the N × N type. Denote by GαA

B , (A,B =
1, 2, ..., N) a real function defined on En+1 which is a current entry of Gα.

We say that (18) is a nonlinear hyperbolic equation if the n+1 matrices Gα endow
En+1 with a hyperbolic structure at the current point P ∈ En+1, i.e. if the following two
conditions are satisfied ([29], [8]):

(i) there exists a direction v ≡ vα(P ) such that det A0 6= 0 , where

A0 = Gαvα;

(ii) if v, ei, (i = 1, 2, ..., n; ei ≡ eiα; vαvα = 1; vαeiα = 0; eα
i ejα = δij)

is an orthonormal base of En+1 at P for every direction n ≡ nj of the n-dimensional
subspace of En+1 generated by the base ei (orthogonal to v), then the matrix

(19) An = A0−1Gαeiαni

possesses N linearly-independent left and right eigenvectors lA and rA , respectively,
corresponding to the real eigenvalue λA of multiplicity mA , i.e.

(20) (An(U)− λAI)rA = 0, lA(An(U)− λAI) = 0.

Since An depends on U and n (n being arbitrary in En), this means that
the eigenvalues and eigenvectors also depend on U and n . This is why we write e.g.
λA(U,n) . The index n of An remainds the vector n and not the dimension of the
Euclidean space En . The superscript A in λA is not related to the matrix A but to
the multiplicity mA . The dummy index convention is understood.

The above definition of nonlinear hyperbolicity generalizes the definition for the case
of linear or affine hyperbolic PDEs, where Gα and g do not depend on U . It preserves
the fact that the Cauchy problem for (18) is well-posed. Indeed, condition (i) ensures the
possibility to write (18) in the form

(21) Ut + AiUxi = B(U, xα),

where

x0 = t ≡ yαvα, xi = yαeiα, Ai(U, xα) = A0−1Gαeiα, B(U, xα) = A0−1g.
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The form (21) is obtained by multiplying (18) by A0−1 (which exists by virtue of
condition (i)). Also, from (6) it is possible to get (21) by the left multiplication by A0−1 .
In this way, (6) and (21) are two equivalent mathematical models for the same physical
problem.

In our concrete case (21), e. g. (6), we have:
• x0 = t (the time), x1, x2, x3 are the space variables,

• A0 is the matrix coefficient of ∂U
∂t , (N = 10, n = 3),

• v = e0 and has coordinates eoα , ei have coordinates

eiα, eαβ = δαβ , δαβ = 0 for α 6= β,

δαβ = 1, for α = β; (α, β = 0, 1, 2, 3); (i = 1, 2, 3).
In this way, {e0, e1, e2, e3} is a basis in the space E4, and, in the Euclidean

space E3 , it corresponds to the canonical basis. Hence for our concrete situation (21) is
a nonlinear hyperbolic PDFs system. The matrix An follows defined by

An = A0−1G1n1 + A0−1G2n2 + A0−1G3n3,

or, taking into account (21), equivalently by

(22) An = A1n1 + A2n2 + A3n3.

In our example (6), it was found ([20]) that, indeed, the eigenvalues are real and the
eigenvectors are linearly independent.

Let us now take as n in condition (ii) just the unit vector normal to that hypersurface
S (improperly called wavefront) (i. e. as in (9)1)

(23) ϕ(t, x1, x2, x3) = 0,

which was supposed to be characterized by the fact that the solution U of (6) varies
steeply across it. In fact, equation (23) is identical to (9)1. Then (23) implies that along S
we have dϕ

dt = 0, implying

(24)
∂ϕ

∂t
+ v · gradϕ = 0, or equivalently,

∂ϕ
∂t

|gradϕ|
+ v · gradϕ

|gradϕ|
= 0.

Obviously gradϕ
|gradϕ| = n , such that the previous equality reads

(25)
∂ϕ
∂t

|gradϕ|
+ v · n = 0.

Introducing the notation λ = −
∂ϕ
∂t

|gradϕ| (as in (10)) we have

(26) λ(U,n) = v · n.

Introduce also the notation

(27) Λi ≡ dxi

dt
, and Ψ(xα,

∂ϕ

∂xα
) ≡ ∂ϕ

∂t
+ λ|gradϕ|,
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such that λ = vini where λ is called the velocity normal to the progressive wave and
Λ , of coordinates Λi , the radial velocity. In this way various vectors in the definition
of hyperbolic equations were related to the characteristics of the motion. In addition, the
theory in [5] enables us to deduce the equation for ϕ by using (24) and (25).
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